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Express detection of visual objects 
by primate superior colliculus 
neurons
Amarender R. Bogadhi 1,2,3 & Ziad M. Hafed 1,2*

Primate superior colliculus (SC) neurons exhibit visual feature tuning properties and are implicated 
in a subcortical network hypothesized to mediate fast threat and/or conspecific detection. However, 
the mechanisms through which SC neurons contribute to peripheral object detection, for supporting 
rapid orienting responses, remain unclear. Here we explored whether, and how quickly, SC neurons 
detect real-life object stimuli. We presented experimentally-controlled gray-scale images of seven 
different object categories, and their corresponding luminance- and spectral-matched image controls, 
within the extrafoveal response fields of SC neurons. We found that all of our functionally-identified 
SC neuron types preferentially detected real-life objects even in their very first stimulus-evoked visual 
bursts. Intriguingly, even visually-responsive motor-related neurons exhibited such robust early object 
detection. We further identified spatial frequency information in visual images as an important, but 
not exhaustive, source for the earliest (within 100 ms) but not for the late (after 100 ms) component 
of object detection by SC neurons. Our results demonstrate rapid and robust detection of extrafoveal 
visual objects by the SC. Besides supporting recent evidence that even SC saccade-related motor 
bursts can preferentially represent visual objects, these results reveal a plausible mechanism through 
which rapid orienting responses to extrafoveal visual objects can be mediated.

Object detection and recognition are fundamental components of primate vision, and a substantial number of 
visual cortical areas are dedicated to processing visual  objects1–5. However, vision does not occur in complete 
isolation of behavior, and an element of visual object processing in the brain must facilitate active orienting in 
association with objects, whether to avoid  threats6 or to foveate and further process behaviorally-relevant items. 
Indeed, certain classes of visual objects, like faces, easily pop out from visual scenes with very short  latencies7, and 
short-latency eye movements can likewise be automatically captured by completely task-irrelevant object  images8.

The speed with which orienting phenomena associated with visual object recognition proceed points to the 
presence of subcortical mechanisms for visual object processing. Indeed, in 1974,  Updyke9 observed neurons 
in the superior colliculus (SC), a site of convergence for retinal and extra-retinal visual  signals10, that were 
particularly sensitive to three-dimensional objects, and SC cells sensitive to complex visual stimuli were also 
reported by Rizzolatti and colleagues in  198011. More recently, a series of seminal studies explored the roles of 
the SC and pulvinar in the processing of face and snake  images12–18. These studies concluded that the SC may 
be part of a fast detection network for visual threats and ecologically-relevant faces, which can in turn influence 
 emotions6. Consistent with this idea, recent work confirmed the presence of rapid preference for face images in 
SC neural  responses19.

Because the SC is also shown to contribute to a variety of important cognitive processes like target selection, 
visual attention, and perceptual decision  making20–26, and given that SC activity can influence cortical areas 
through different thalamic  circuits27–30, it stands to reason that the SC may be involved in object processing in a 
more general way than being specifically tuned for processing snakes and faces. In fact, experimental manipula-
tion of SC activity is associated with altered object selectivity in a patch of the ventral visual processing stream 
of the  cortex31, and, similarly, the SC has a dedicated primary cortical area in  mice32.

Importantly, the SC possesses a kind of privileged access to the saccadic system’s motor periphery, and even 
saccade-related SC motor bursts embed within them a preferential visual-object  representation33. Therefore, 
a generalized detection of extrafoveal visual objects by the SC not only can support rapid orienting behav-
iors, which are facilitated by visual  objects8, but it can also help bridge visual object representations across eye 
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 movements33. As a result, there is a pressing need to investigate whether, and how, neurons in the primate SC 
detect visual objects in the extrafoveal visual space.

In this study, we investigated this topic by presenting seven different visual object images to individual SC 
neurons with extrafoveal response fields, along with various control versions of the same images disrupting object 
information. We found rapid and sustained detection of the extrafoveal visual objects by all visually-responsive 
SC neuron types. We also observed that SC tuning to spatial frequency information in  images34,35 can facilitate 
the fastest components of SC visual object processing. These results, demonstrating that generalized visual 
object detection is a robust property of the primate SC, are intuitive in hindsight, especially because detecting 
objects outside of the fovea is very often a necessary precursor to foveating objects for a detailed visual analysis 
in normal active visual behavior.

Results
To investigate visual object detection by SC neurons, we employed a version of the delayed visually-guided sac-
cade task with the saccade target overlayed on images in the response fields (RF’s) of the recorded SC neurons 
(Fig. 1A; “Methods”). In every experimental session, we used a novel set of 28 different images, drawn from seven 
different object categories and their corresponding control images (Fig. 1B; “Methods”). The control images were 
luminance- and spectrum-matched non-object images (“Methods”): phase-scrambled controls had the same 
spatial frequency content as the real object images, but with spectral phase scrambling; grid-scrambled images 
had small, square patches (grids) containing identical copies of small patches from the original images, but with 
randomized locations (Fig. 1B). The grid-scrambled images maintained local image properties but disrupted 
global form information, and we explicitly tested the case of peripheral objects filling RF’s (and with local features 
smaller than these RF’s; “Methods”). Finally, since grid scrambling also introduced a square grid of hard edges 
between the scrambled image patches (altering the spatial frequency content of the images), we also checked 
whether object detection by SC neurons was significantly disrupted by overlaid grids presented over the intact 
objects (object + grid images; Fig. 1B). Thus, each neuron was tested with seven different object images (of seven 
different categories) and four different image types: two being coherent objects (object and object + grid) and 
two being image-matched, non-object images (grid-scrambled and phase-scrambled).

The very first SC visual responses differentiate between object and non-object stimuli
We recorded SC neural responses to images presented in their RF’s. The RF’s of the neurons were determined 
independently using the classic delayed visually-guided saccade with a small white spot (“Methods”); the center 
and extent of each RF were estimated online (Fig. 2A,C), to determine the position and size of the image patch. 
We also confirmed that the RF’s of all of the recorded neurons were away from the central 2° of the visual field 
in both monkeys (Fig. 2B,D), with eccentricities spanning up to 24°.
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Figure 1.  Behavioral task and example images. (A) Each task started with a central fixation spot. At the 
approximate response field (RF) locations of the recorded neurons in a given session (yellow dashed circle), an 
image appeared during fixation. After 300–700 ms from image onset, a saccade target appeared on top of the 
image for another fixation interval (500–1000 ms). The fixation spot then disappeared, instructing the monkey 
to generate a saccade towards the target on top of the image (green arrow). Our focus here is on the image onset 
component of the task; effects in the saccade component were documented  recently33. (B) Example images 
from a given session. The fruit image from the session is shown in Fig. 3, and the human neutral face image is 
not shown for data privacy reasons. The top row shows the real object images, and the second row shows these 
images with the grid overlay. The third row shows the phase-scrambled images, and the bottom row shows the 
grid-scrambled images (“Methods”).



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21730  | https://doi.org/10.1038/s41598-023-48979-5

www.nature.com/scientificreports/

We analyzed SC visual responses to images of real-life objects appearing within the recorded neurons’ RF’s. 
Initial and sustained SC visual responses were systematically higher for real object stimuli than for non-object 
images. Consider the example neuron of Fig. 3B. In both the object and object + grid conditions (leftmost two 
columns), the neuron’s visual response was higher than in the phase- and grid-scrambled conditions (rightmost 
two columns). Therefore, the neuron discriminated between intact object and non-object stimuli even within 
its very first, initial visual burst (i.e. within approximately 50 ms from image onset).

In Fig. 3C–F, we also show results from four additional example neurons. In all cases, the initial stimulus-
driven visual bursts were the highest for real object images and/or object + grid images. Moreover, sustained 
visual activity was clearly higher for the object and object + grid images than for the phase- and grid-scrambled 
images, and this was the case even for the neurons with relatively low sustained activity (Fig. 3E,F). Note that 
in these analyses, we pooled all seven object images of the session together after confirming that there was no 
consistent population preference among the 7 categories of images that included faces (“Methods”). Also note 
that starting at 300 ms after image onset (gray shaded regions), the saccade target could appear for the next stages 
of the behavioral task (“Methods”). Therefore, in all subsequent analyses, we focused only on the first 300 ms 
of neural responses; saccade-related effects were detailed  elsewhere33. In all, the five example neurons of Fig. 3 
suggest the presence of both very early as well as sustained discrimination of object and non-object images by 
primate SC neurons. Next, we proceeded to quantify this discrimination of object and non-object images in our 
SC neural population.

We confirmed that, across the population, early SC visual bursts robustly discriminated between object 
and non-object images. We did so by assessing the discriminability of firing rates between the object and grid-
scrambled conditions; we performed a running receiver operating characteristic (ROC) analysis on the neural 
responses, using 40 ms time bins in steps of 10 ms (“Methods”). For each time bin around image onset, we 
collected firing rates from each condition (either intact object or grid-scrambled image) pooled for all seven 
object categories, and we then calculated the area under the ROC curve (AUC) between the two distributions. 

Figure 2.  Response field (RF) locations of the recorded neurons. (A) Visual RF of an example neuron recorded 
from monkey M. Each black circle indicates a sampled location in which we presented a small white spot during 
fixation. The pseudocolor surface indicates the mean firing rate emitted by the neuron in a visual epoch 40–140 
ms after spot onset (we interpolated across space between the sampled locations to obtain the pseudocolor 
surface). The neuron’s RF occupied the upper left quadrant, and our online estimate of its hotspot is indicated 
by the red asterisk. The red cross indicates where we placed the image during the main experiment. (B) All 
RF hotspot locations from monkey M (remapped to one hemifield for easier viewing). Our neurons were 
extrafoveal. (C) Visual RF of an example neuron recorded from monkey A. The same conventions as in (A) 
apply. The neuron occupied the lower right quadrant. (D) All RF hotspot locations from monkey A, showing 
similar coverage to monkey M. For purely motor neurons, RF hotspot locations in (B,D) were obtained from the 
saccade-related, rather than visual, responses.
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AUC values significantly different from 0.5 indicated discriminable firing rate distributions between object and 
grid-scrambled images (“Methods”).

In each monkey, we accepted a neuron as significantly detecting objects versus non-object stimuli if it had 
a significant AUC value in any time bin within 0–300 ms from image onset (“Methods”). We used a broad time 
window (0–300 ms) to avoid selection bias towards neurons with early or late discrimination. Out of 131 neurons 
in monkey M (including task-irrelevant ones like purely motor neurons), 77 showed significant discrimina-
tion performance for intact objects relative to grid-scrambled images. In monkey A, 26 out of 82 total neurons 
(again including task-irrelevant ones like purely motor neurons) did so. Most importantly, in both monkeys, the 
highest discrimination performance always occurred in the very initial visual burst interval. This is illustrated 
in Fig. 4A for monkey M and Fig. 4D for monkey A (error bars denote 95% confidence intervals). Therefore, 
SC neurons detect extrafoveal visual objects in an express manner, consistent with behavioral evidence of an 
automatic influence of peripheral visual forms on target selection for eye  movements8, and also consistent with 
results demonstrating altered cortical object selectivity with altered SC  activity31.

Since grid scrambling necessarily entailed adding hard vertical and horizontal edges around each grid (see 
the example grid-scrambled image in Figs. 1, 3A), we also checked whether the results of Fig. 4A,D were trivi-
ally explained by these added edges. We, therefore, repeated the ROC analyses, but this time comparing the 
grid + object images to the grid-scrambled ones. Now, both image types had the same hard edges embedded 
within them, but the grid + object images preserved much of the form information in the original intact object 
images; the grid + object stimuli were akin to the objects being occluded by a thin rectangular mesh and thus 
still recognizable as coherent objects. We still found early and sustained discrimination performance in both 
monkeys (Fig. 4B,E), albeit, with weaker early discrimination in monkey A. Thus, the results of Fig. 4A,D were 
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Figure 3.  Early and sustained enhancement of superior colliculus (SC) visual activity for real-life object images. 
(A) We presented an image of real-life objects (e.g. banana) as well as multiple variants of it. The object + grid 
image overlaid a grid creating small square patches of image regions. The phase-scrambled image contained 
the same spatial frequency content as the object image, but with scrambled phase information. And, the grid-
scrambled image had randomized grid locations from the object + grid image. In total, we tested seven different 
object images, from seven categories, spanning faces, animals, and artificial objects. See also Fig. 1. (B) Each 
column shows the responses of an example neuron under the four different image conditions. The leftmost 
column shows responses to intact object images. Top: individual trial spike time rasters showing responses to 
each object category (according to the color legend of object categories in A); bottom: average firing rate plot 
pooling the seven different object images together (we did not assess object preference in this study because 
we only had one exemplar per object category within each session). The neuron exhibited a robust visual burst 
followed by sustained activity. In the second column, the overlaid grid minimally altered the response (the faint 
curve is a copy of that in the leftmost column for reference). However, both the phase-scrambled (third column) 
and grid-scrambled (fourth column) conditions were associated with significantly weaker activity. (C–F) Four 
additional example neurons showing similar results. The object and object + grid conditions always had the 
highest initial visual bursts. Moreover, sustained activity was higher for the object and object + grid conditions 
than for the scrambled conditions. The gray shaded regions in (B–F) denote the time at which the saccade target 
could appear in the subsequent stages of the trials (Fig. 1).
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not explained by the slightly altered spatial frequency content introduced by the grids in the grid-scrambled 
images. We next explored spatial frequency effects more closely.

The earliest phase of visual-object detection by SC neurons uses spatial frequency image 
content
Because spatial frequency is expectedly relevant for visual object  recognition36–40, and because primate SC neu-
rons exhibit spatial frequency  tuning34,35, we next asked how object detection performance as in Figs. 3, 4A,B,D,E 
depended on spatial frequency. We repeated the ROC analyses, but we now pitted intact object images against 
phase-scrambled images (“Methods”). In these latter images, there was no grid overlay, but the phases of the 
different spatial frequency bands of the images were randomized relative to the intact object image condition. 
We still found a substantial number of neurons in each monkey with significant AUC values in the first 300 ms 
after image onset (Fig. 4C,F), satisfying our criteria for object detection by SC neurons. Interestingly, the very 
earliest phase (< 100 ms) of AUC discrimination performance between intact and phase-scrambled images was 
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Figure 4.  Early and late detection of visual objects by SC neurons. (A) For each neuron in monkey M, we 
compared distributions of firing rates (in 40 ms time bins) between intact and grid-scrambled object images 
using ROC analyses (“Methods”). For each neuron with a significant AUC (area under ROC curve) value in 
the interval 0–300 ms from image onset (n = 77), we plotted AUC as a function of time in the top panel (the 
color indicates the AUC value). The bottom panel plots the average of all neurons’ AUC time courses (error bars 
denote 95% confidence intervals across the population), showing an initial robust peak followed by sustained 
elevation. The dashed vertical line marks the first time point after stimulus onset for which the AUC value of 
the population was significantly deviated away from 0.5 (30 ms). (B) Same analysis but comparing object + grid 
images to grid-scrambled images. The overlay of a grid on top of the images (Figs. 1B, 3A) was not enough 
to strongly alter the ability of the neurons to detect visual objects, but the altered spatial frequency content of 
object + grid images slightly modified the early (< 100 ms) AUC values (see C). (C) Same analysis but comparing 
object images to phase-scrambled images. Here, the early peak in AUC discrimination performance was 
attenuated, suggesting that the spatial frequency content of object images contributes to early object detection 
mechanisms by the SC. (D–F) Same as (A–C) but for monkey A. The results in both animals were consistent 
with each other. Figure 5 shows related analyses controlling for the effects of microsaccades.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21730  | https://doi.org/10.1038/s41598-023-48979-5

www.nature.com/scientificreports/

significantly weaker than in the case of grid scrambling (Fig. 4A,D vs Fig. 4C,F). For example, across the popula-
tion of significant neurons in each monkey in the phase-scrambled condition (46 in monkey M and 35 in monkey 
A), the average population AUC value first moved significantly away from 0.5 (at the 95% confidence level) at 
70 ms and 60 ms after image onset for monkeys M and A, respectively (Fig. 4B,E). This contrasts with the earlier 
detection of objects with respect to grid-scrambled images (30 ms; Fig. 4A,D). This observation implies that in 
the very early phases (< 100 ms) of visual responses in our population, neural activity for the intact objects was 
more similar to that for phase-scrambled objects than it was to grid-scrambled images. We emphasize, however, 
that there was still significant, albeit slightly delayed, AUC discrimination performance between objects and 
phase-scrambled images within the initial visual burst phases of SC responses, and this is consistent with the 
five example neurons of Fig. 3 (also see Fig. 5D, H for clearer evidence of this across the population). Therefore, 
object detection by SC neurons in the very early phases (< 100 ms) of neural responses is partially, but not fully, 
mediated by the spatial frequency image processing capabilities of these neurons. This highlights an interesting 
potential functional role for spatial frequency tuning in primate SC  neurons34,35, and it is consistent with an 
important role for spatial frequency information in object  recognition36–40.

In longer intervals after image onset (i.e. > 100 ms), there was still significant AUC discrimination perfor-
mance between the intact and phase-scrambled object images. This is clearly seen in Fig. 4C,F, in which sig-
nificant AUC discrimination performance persisted at least until the next phase of the trials (> 300 ms). Such 
sustained effect might suggest a reverberation of object representation between the SC and other visual cortical 
areas associated with object recognition. For example, because object recognition may preferentially benefit from 
mid-spatial-frequency  information37–40 and the SC is primarily low-spatial-frequency  tuned34, feedback to the 
SC after the initial visual bursts can help to stabilize the SC representation for the detected objects for prolonged 
intervals. Therefore, object detection by SC neurons proceeds with both an early (< 100 ms) and a sustained 
(> 100 ms) phase; the early phase (< 100 ms) is supported by spatial frequency information that is intrinsically 
present in the SC neurons (Fig. 4A,D), and the later phase (> 100 ms) may use additional form information that 
could potentially be relayed to the SC from other brain areas (Fig. 4C,F).

We also analyzed microsaccades to remove potential eye movement confounds from our analyses. Microsac-
cade rate exhibited expected modulations as a function of time from image onset (Fig. 5A,E)41–44. This meant that 
in the early visual burst intervals of neural responses, there were already rare microsaccades due to microsaccadic 
inhibition. This ruled out a potential role for microsaccades in at least explaining the early visual burst interval 
results so far. However, we still repeated all analyses when excluding all trials containing microsaccades in the 
interval between -100 ms and + 300 ms from image onset. Our results were largely unchanged (Fig. 5B–D,F–H). 
In fact, the AUC discrimination performance improved slightly across the board (compare Fig. 5B–D,F–H to 
Fig. 4), as might be expected given that microsaccades can modulate SC visual  bursts45,46, and also given that 
these movements can cause measurable visual reafferent SC neural modulations after image  jitter47, both in a 
spatial-frequency dependent manner.

Even visual-motor SC neurons detect objects in their very first visual responses
To further appreciate the SC’s role in express object detection, even within the initial visual bursts, we also 
considered this structure’s different functional neuron types. For example, it is well known that deeper-layer 
visual-motor neurons are relevant for a variety of cognitive processes like target selection, attention, and deci-
sion  making20–22,24–26,51, in addition to their roles in eye movement  generation52–55. So, we functionally classified 
our neurons according to classic visual and saccade-related response criteria (“Methods”), and we then explored 
object detection performance once again.

In both monkeys, most of our neurons were visual-motor-prelude neurons (“Methods”): they emitted visual 
bursts after stimulus onset, saccade-related bursts at saccade onset, as well as significant prelude activity (above 
baseline spiking rate) before saccade onset. We also encountered visual-motor neurons, which did not exhibit 
substantial delay-period (prelude) activity but were otherwise similar to visual-motor-prelude neurons. Finally, 
our database included a fewer number of purely visual neurons, which came in two primary flavors: visual 
neurons emitting a burst shortly after stimulus onset, and visual-delay neurons also exhibiting delay-period 
activity after the bursts.

All neuron types that we encountered exhibited significant object detection capabilities, and very similarly 
in both monkeys. For example, Fig. 6A,D shows the distribution of neuron types contributing to the results of 
Fig. 4A,D. Both visual-motor types were most frequent in both monkeys (likely due to the recording technique 
with thick electrode shanks; “Methods”), but purely visual neurons were also clearly present. Most interestingly, 
visual-motor neurons detected visual objects even earlier than visual-delay neurons in both monkeys (with the 
caveat that the number of the visual-delay neurons was relatively low). This result is illustrated in Fig. 6B,E: in 
both animals, visual-motor-prelude neurons exhibited high AUC discrimination performance (relative to grid-
scrambled images) in their very initial visual bursts, and this high discrimination performance actually preceded 
the discrimination performance of visual-delay neurons. Even though the numbers of visual-delay neurons were 
relatively low in each animal, the effects in both animals were virtually identical, increasing our confidence in 
concluding that there is indeed very early object detection by visual-motor-prelude neurons. Such neurons detect 
visual objects as early as (if not earlier) than purely visual neurons (Fig. 6B,E; also see Fig. 6C,F).

We also found that prelude activity was not a prerequisite for visual-motor neurons to exhibit rapid object 
detection. Specifically, in Fig. 6C,F, we repeated the ROC analyses but now for the visual-motor neurons (green), 
which did not have substantial delay-period activity. For comparison, we also plotted the visual-motor-prelude 
neuron results from Fig. 6B,E again, to facilitate comparing the curves. Both neuron types exhibited similar 
early detection of intact visual objects relative to grid-scrambled images (similar results were also obtained with 
phase scrambling). In monkey M, we also had some purely visual (burst) neurons, and they also exhibited early 
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object detection (yellow in Fig. 6C). Therefore, all the above results suggest that visual-motor SC neurons are a 
substantial contributor to the SC’s ability to rapidly detect visual objects.

Perhaps expectedly, the neurons that had sustained activity also showed sustained significant AUC discrimi-
nation performance between object and scramble images. For example, when we repeated the ROC analyses of 
Figs. 4, 6 for visual-motor-prelude and visual-delay neurons combined (both of which had sustained activity), 
and we compared them to visual-motor and visual neurons (both not having sustained activity), we found that 
the later (> 100 ms) AUC discrimination performance was systematically higher for the former group of neurons 
(Fig. 7). This observation suggests that sustained activity provides a plausible spiking substrate for encoding 
information about the visual images.

Therefore, not only do SC neurons detect extrafoveal visual objects early (Figs. 3, 4, 5), but they do so even 
if they are motor-related neurons (Fig. 6). Moreover, delay-period activity contributes to maintaining informa-
tion about the intact object images for sustained intervals, as might be the case in a variety of cognitive tasks.

Discussion
We found that all of our classified visual and visual-motor SC neuron types contributed to rapid detection 
of peripheral visual object images, with even deeper visual-motor neurons doing so in their very first visual 
bursts. Such visual-motor neurons are typically implicated in a variety of cognitive functions beyond saccade 
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Figure 5.  Discrimination between object and non-object stimuli by SC neurons’ visual responses, after 
controlling for microsaccades. (A) Microsaccade rate around the time of image onset from monkey M. A classic 
modulation of eye movement rate was  present41,42,48,49. Note that microsaccade rate was negligible in the early 
visual burst interval of neural responses, due to the known phenomenon of microsaccadic inhibition. The 
relatively high (but declining) microsaccade rate before image onset was due to the short initial fixation interval 
of the task (Fig. 1), and therefore had some refixation saccades as the monkey was starting a new trial after the 
end of the previous one. The gray bar on the x-axis denotes the interval chosen for removing microsaccades 
in the control analyses of (B–D). (B–D) Same results as in Fig. 4A–C but after including only trials in which 
there were no microsaccades in the entire shown interval in (A) (− 100 ms to + 300 ms from image onset). The 
same qualitative results as in the main text were obtained. In fact, the AUC values here were generally higher 
than with all trials included, and significant AUC values now appeared as early in (D) as they did in (B, C). This 
is expected because microsaccades jitter images, and are associated with various effects on SC neurons’ firing 
 rates45–47,50. (E) Same as (A) but for monkey A. (F–H) Same as (B–D) but for monkey A.
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 generation20–22,56–58, suggesting that the visual form information that they carry can influence such functions as 
well. Moreover, because of the intrinsic motor nature of these neurons, it would be very intriguing to think more 
deeply of the role of the SC’s visual object representations in the broader context of active vision with saccades. 
For example, we recently found that SC saccade-related motor bursts are sensory-tuned, and that they still exhibit 
a preference for real-life object  images33. This might suggest that peripheral-to-foveal trans-saccadic integration 
of visual information across eye movements, which can benefit from the SC’s ascending projections to the cortex, 
may be particularly important for visual object representations.

Besides the short latencies associated with object detection by SC neurons, we were particularly intrigued by 
the role of spatial frequency information in object detection during the earliest phases (< 100 ms) of SC neural 
responses. In the early visual burst phase (< 100 ms) of neural responses, we observed that AUC discriminability 
between the responses for object images and spectral-matched phase-scrambled images was weakened relative 
to grid scrambling (Fig. 4C,F; but see Fig. 5). This suggests that a functional role for spatial frequency tuning in 
SC  neurons34 could be to aid in rapid object detection, especially given that object recognition does indeed make 
use of spatial frequency  information36–40. Indeed, this could also mediate rapid orienting responses to objects in 
 periphery8, since the spatial frequency tuning of SC neurons is relevant for saccadic reaction  times34.

Having said that, spatial frequency information cannot fully explain early object detection by the SC because 
the AUC discrimination performance between intact objects and phase-scrambled controls still became sig-
nificant earlier than 100 ms after image onset (Figs. 4, 5). In fact, middle spatial frequencies, which are rel-
evant for object  recognition37,38,40, are associated with slightly delayed SC visual bursts compared to low spatial 
 frequencies34. This is consistent with the slight delaying of AUC discrimination performance with phase scram-
bling relative to grid scrambling. The raw firing rates of the five example neurons of Fig. 3 also all showed higher 
initial visual burst strengths for real objects relative to phase-scrambled images. These timings are still faster than 
when some cortical visual areas detect  objects59. Indeed, early studies have consistently demonstrated that tem-
poral cortex responses to visual objects typically emerge at approximately 100 ms after stimulus  onset60,61, which 
is in line with the signal transduction hierarchy along the visual processing  stream62. All of these observations 
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Figure 6.  Express object detection even by visual-motor neurons. (A) Distribution of neuron types (“Methods”) 
exhibiting significant object detection performance in the data of Fig. 4A (monkey M). Visual-motor and 
purely visual neurons were both present. (B) When we compared the initial AUC discrimination performance 
between visual-motor-prelude and visual-delay neurons, we found earlier object detection by the visual-motor-
prelude neurons (with the caveat of significantly fewer visual-delay neurons in the database). Error bars denote 
95% confidence intervals. The dotted red vertical line provides an additional time reference for comparison. 
(C) Similarly, visual-motor neurons (without prelude activity) also exhibited early detection performance. In 
this panel, the curve from visual-motor-prelude neurons is replicated from (B) to facilitate comparison. In this 
animal, a few visual neurons were also encountered that exhibited object detection performance, and their 
results are shown in yellow. Thus, all visual and visual-motor neuron types detected objects in this animal, and 
it is interesting that even visual-motor neurons exhibited early detection. (D–F) Highly similar results from 
monkey A (again the red vertical line in E provides an additional time reference). Note that in this monkey, we 
did not encounter visual neurons, so they are not shown in (F) as they were shown in (C). Figure 7 provides 
further analyses of neuron types, focusing on later, sustained intervals of neural discharge.
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affirm, in our view, a role for the SC in early detection of visual objects in extrafoveal visual space. This is also 
consistent with early pop out of high level visual objects, like faces, in  perception7.

Another interesting observation is that object detection in later intervals after the visual bursts (e.g. > 100 ms 
after image onset in the phase scrambling results) seems to rely on more than just the spatial frequency informa-
tion. This is because AUC discrimination was still significant between object and phase-scrambled controls in 
these later intervals (Fig. 4C,F), and it would imply potential feedback from other visual cortical areas involved 
in object processing. This could functionally allow visual cortical areas to utilize additional spatial frequency 
bands, and other rich visual feature representations, beyond those represented in the SC. That is, since SC neurons 
are predominantly low-pass in nature at our tested  eccentricities34 (Fig. 2), and since various cortical areas can 
detect objects at multiple spatial frequency  bands36, feedback from these areas could help to sustain the object 
representations in the SC after the initial visual bursts subside. This is important because object recognition does 
indeed benefit from middle spatial frequencies in  images37,38,40. It is also important because it demonstrates that 
at the level of the SC, at least two stages of visual object processing may exist: an early stimulus-induced phase 
followed by a later more sustained integrative representation.

Related to this, one question that may emerge out of our results is whether SC neurons are indeed prefer-
entially tuned to detect objects, or whether their object responses that we found may reflect instead a tuning to 
mid-level representations, such as oriented contours. Our grid-scrambled images were meant to maintain local 
feature representations, but the sizes of our grids may be too small for making an interpretation with regards to 
longer/larger oriented contours. Thus, our grid scrambling may have disrupted both global object configurations 
as well as mid-level contour representations. This leaves open the possibility that SC neurons mediate rapid object 
detection via sensitivity to mid-level feature representations, perhaps like in the second or fourth cortical visual 
 areas63,64. However, considering other existing evidence in the literature, we think that it might be unlikely to find 
strong tuning to mid-level image features in the SC. For example, using reverse correlation techniques, it was 
found that SC RF’s are generally circularly symmetric, with some neurons showing anisotropies in suppressive 
surrounds related to the neurons’ locations in the SC topographic  map65. More importantly, orientation tuning 

Figure 7.  Neurons with sustained delay-period (prelude) activity allow sustained discrimination between 
object and non-object images in SC RF’s. (A) We performed our ROC analyses on object versus grid-scrambled 
images as in Figs. 4, 6, but this time by pooling only neurons with delay-period activity (visual-delay and 
visual-motor-prelude neurons) or neurons without (visual and visual-motor neurons). In the latter group, 
discrimination performance returned to baseline (light gray), whereas it remained significant throughout the 
sustained interval for the first group of neurons (see red vertical arrow). Error bars denote 95% confidence 
interval. (B) We observed very similar results in monkey A, although the smaller number of visual and visual-
motor neurons (light gray) reduces the statistical confidence around this latter group of neurons.
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in the SC is relatively  weak9,66,67. In fact, in our recent comparison of multiple visual features in SC responses, 
we found that visual response tuning to orientation was the weakest from among the other features that we 
tested, including spatial frequency, contrast, luminance polarity, and real-life  objects33. Thus, it remains to be 
seen whether our results are explained by tuning to mid-level visual representations by SC neurons or not. In 
our current experiments, we focused on the scrambling controls, to control for low-level features and to be 
consistent and comparable with the previous studies on object recognition in the cortex, which required many 
trials in the sessions. Future work utilizing image controls that preserve mid-level features would be necessary 
to fully answer this  question68.

Similarly, future work could investigate how object scale relative to the RF size matters. In our experiments, we 
picked image sizes that fit to our RF sizes and that might be consistent with the statistics of visual object sizes in 
extrafoveal vision. That is, we were motivated by the idea that extrafoveal objects need to be detected (sometimes 
rapidly) before they are foveated with eye movements, and that such detection can be mediated by the SC. Thus, 
we filled the relatively large extrafoveal SC RF’s with objects. However, an equally relevant scenario would be to 
investigate, perhaps in foveal vision, whether an object that is globally much larger than a given RF size might 
still be preferentially detected by SC neurons, perhaps through contextual surround effects.

In all, our results motivate further investigations of subcortical pathways for visual perception, particularly 
given the active nature of behavior in the real world, and the perpetual interplay between sensory processing, on 
the one hand, and movement generation, on the other. In the same spirit, it would be equally interesting to see 
whether similar early detection of visual objects as we have found in the SC also appears in the lateral intrapari-
etal area and frontal eye fields, dorsal cortical areas that are classically associated with active orienting behavior.

Methods
Experimental animals and ethics approvals
We recorded superior colliculus (SC) neural activity from two adult, male rhesus macaque monkeys (A and M) 
aged 9 and 8 years, respectively. The experiments were approved by ethics committees at the regional govern-
mental offices of the city of Tübingen (Regierungspräsidium Tübingen), and they were in full accordance with 
the guidelines and regulations set forth by the German government and the European Union. Our methods are 
also in accordance with the ARRIVE guidelines.

Laboratory setup and animal preparation
The experiments were conducted in the same laboratory as that described for the monkey portions of ref.8. 
Briefly, the monkeys were seated in a darkened booth ~ 72 cm from a calibrated and linearized CRT display 
spanning ~ 31° horizontally and ~ 23° vertically. Data acquisition and stimulus control were managed by a modi-
fied version of  PLDAPS69, interfacing with the Psychophysics  Toolbox70–72 and an OmniPlex data acquisition 
system (Plexon, Inc.).

The monkeys were prepared for behavioral training and electrophysiological recordings  earlier73,74. Specifi-
cally, each monkey was implanted with a head-holder and scleral search coil in one  eye73. The search coil allowed 
tracking eye movements using the magnetic induction  technique75,76, and the head-holder comfortably stabilized 
head position during the experiments. The monkeys also each had a recording chamber centered on the midline 
and tilted 38° posterior of vertical, allowing access to both the right and left SC.

Behavioral task
We employed a modified version of the classic delayed, visually-guided saccade task, similar to what we did in 
our recent behavioral  study8 (Fig. 1). Each trial started with the appearance of a central white fixation spot of 
79.9 cd/m2 luminance, presented over a gray background (26.11 cd/m2). The fixation spot was 0.18 × 0.18° in 
dimensions. After 300 ms, an image patch (see below for image preparation procedures) appeared within the 
visual response fields (RF’s) of the recorded neurons. The image patch could contain pictures of real-life objects 
or the other versions of image controls described in more detail below, and it had an average luminance of 42.07 
cd/m2. After 300–700 ms from image patch onset, a white spot identical to the fixation spot appeared on top of 
a gray disc (diameter: 0.54°; 26.11 cd/m2) in the center of the image patch. This white spot was referred to as the 
saccade target in our analyses. It remained visible (along with the fixation spot and image patch) for 500–1000 
ms, at which point the fixation spot disappeared to instruct the monkeys to generate a saccade towards the sac-
cade target (and the underlying image patch). If the monkey successfully made the saccade within 500 ms, it 
received positive reinforcement in the form of liquid reward.

As described in more detail below, the size of the image patch that we presented was matched to the RF 
size, and its position was designated after initial assessment of RF locations and sizes. Such assessment was 
made by running fixation and saccadic RF mapping tasks, and our instantiations of these tasks were described 
 previously50,74. Briefly, we performed a visually-guided saccade task with a small white spot (the same size as 
the fixation spot) as the target. The monkey initially fixated, and an eccentric target appeared. After a random 
delay, the fixation spot was removed, instructing the monkey to generate a visually-guided rapid eye movement 
to the target. In the fixation variant of the task, the fixation spot was not removed at trial end, meaning that the 
monkey did not generate a saccade to the target, and was instead rewarding for maintaining fixation. Target-
aligned neural responses in both tasks allowed us to analyze visual responses, and saccade-aligned responses in 
the saccade version of the task allowed us to assess whether we were in deeper motor-related SC layers or not.

Image database and image pre-processing procedures
We used a total of 156 grayscale images, from previously published  studies8,31,77, across seven different object 
categories: neutral monkey face (15 images), threatening monkey face (15 images), snake (15 images), artificial 
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object (15 images), human hand (16 images), neutral human face (64 images), and fruit (16 images) (Fig. 1; also 
see Fig. 3A in “Results”). In each session, we randomly picked seven images from the database, one from each 
category.

For each session, we first sized the images to match the RF sizes of the neurons across the recording contacts. 
Our neurons spanned eccentricities in the range of 3.1–23.9° (Fig. 2), and we assessed their RF’s using standard 
visual and saccadic tasks. The image patches were square, and their sizes were in the range of 2–8° (in width and 
height). These sizes fit within the excitatory parts of the neurons’ RF’s. Since we had multiple RF’s within a ses-
sion (see neurophysiological procedures below), we picked the image location that best matched most of these 
RF’s. This was feasible given the topographic organization of the SC and the fact that our electrode penetrations 
were roughly orthogonal to the SC surface at our recorded eccentricities.

We then iteratively equalized the luminance histograms and spatial frequency spectra of the seven images of 
a given session using the SHINE  toolbox78. Specifically, we ran 20 iterations of histogram matching (histMatch 
function) of the gray levels across the images, as well as spectral matching across the same images (specMatch 
function). To generate phase-scrambled images, we randomized the phase matrices of the Fourier-decomposed 
images, while keeping the amplitude matrices unchanged. Then, to match the real and phase-scrambled images 
further, we took all object images and their corresponding phase-scrambled images, and we again iteratively 
matched them once more for histogram levels and frequency spectra using the same SHINE toolbox functions 
(again, with 20 iterations). Example final images (real and phase-scrambled) are shown in Fig. 1 and also in 
Fig. 3A of “Results”.

To obtain the grid-scrambled image controls, we overlaid 1-pixel-width horizontal and vertical lines of mean 
image luminance over the real object images. These horizontal and vertical lines formed a grid of 0.33° × 0.33° 
squares within which the original object was visible. We then scrambled all grids by randomizing their original 
locations in the image. To ensure that the neural modulations associated with the grid-scrambled images were 
not fully explained by the overlaid horizontal and vertical gray lines, we also created the grid overlay without 
randomizing the individual grid locations. This created the object + grid images (as if the objects were intact and 
only occluded by a thin grid in front of them). Examples of the final grid-scrambled and object + grid images used 
in our study are shown in Fig. 1 and in Fig. 3A of “Results”. It should additionally be emphasized here that we 
were primarily interested in extrafoveal object detection. Thus, the object images occupied extrafoveal SC RF’s, 
with the individual grids being smaller than the RF’s. This was a deliberate choice that we made in order to dis-
rupt the global configuration of small localized features of the objects within the relatively large extrafoveal RF’s.

Neurophysiological procedures and functional cell type classification
We recorded neural activity using linear microelectrode arrays (V-Probes, Plexon, Inc.) inserted into the SC. We 
aligned the arrays (16- or 24-channels with 50 µm inter-electrode spacing) to obtain sufficient coverage across 
different functional SC layers (0.8–1.2 mm depth coverage by the contacts).

The experiment started by identifying entry into the SC by the deepest electrode contact, and we then 
advanced the array to insert further contacts into the SC. After ensuring that the tissue had settled and the neural 
activity was stabilized across contacts, we assessed the RF’s at the electrode contacts using standard visual and 
saccade tasks. This allowed us to place and size the object images for a given session according to the neurons’ 
approximate RF locations and sizes. Following RF estimation and the preparation of the object and control 
images to fit the RF sizes, we ran the main experiment and collected an average of 32 (± 8 SD) trial repetitions 
per session of the different image conditions that we had: 4 image patch versions (real object, phase-scrambled, 
grid-scrambled, and object + grid) of each of the 7 object categories (total of 28 different images), resulting in a 
total of 903 (± 239 SD) trials per session.

We classified neurons as being visual, delay, visual-delay, visual-motor, visual-motor-prelude, or motor in 
nature, as per previous  criteria79. Note that such classification is a functional proxy for SC layer information, as 
known from the  literature80, and as we also demonstrated from this dataset in a recent  study33. Specifically, in 
our delayed visually-guided saccade to image task, we measured the firing rate in each trial, regardless of image 
conditions, during four different epochs: baseline (100 ms before image onset), visual (50–150 ms after image 
onset), delay (400–500 ms after saccade target onset), and motor (− 50 to 25 ms from saccade onset). Next, 
we used the firing rates in these four epochs to compute a non-parametric ANOVA (Kruskal–Wallis), and we 
determined the neuron class by post-hoc significance tests (p < 0.05). Neurons with significant activity in the 
visual epoch compared to the baseline epoch were classified as visual neurons. Similarly, neurons with significant 
activity in the motor epoch compared to the baseline and delay epochs were classified as motor neurons, and a 
visual neuron with significant motor activity was classified as a visual-motor neuron. Furthermore, visual neu-
rons possessing significant delay-period activity were labeled as visual-delay neurons, and visual-motor neurons 
with significant delay-period activity were classified as visual-motor-prelude neurons. Any neuron that did not 
have higher than 5 spikes/s average firing rate in any of the above-mentioned measurement intervals (other than 
baseline) was excluded from further study. Similarly, for the purposes of this study, we did not analyze the purely 
motor neurons, since we were interested in assessing visual object detection by the SC.

In total, we had 82 included neurons from monkey A and 131 from monkey M. Approximately half of the 
neurons in monkey A (47.56%) and two thirds in monkey M (67.18%) were visual-motor-prelude neurons in our 
database. The next most frequent neuron type in our sample was visual-motor neurons (19.51% in monkey A and 
16.03% in monkey M), followed by the motor (13.41% and 6.87%) and visual-delay (13.41% and 5.34%) neurons, 
and then finally the visual neurons (6.1% and 3.82%). Delay-only neurons were a rarity (1 in monkey M and non-
existent in monkey A) and were not analyzed. The neurons’ preferred RF hotspot locations are shown in Fig. 2.
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Data analysis
We detected saccades and microsaccades using our previously described  toolbox81, and we inspected the detection 
results manually. To investigate whether microsaccades at image onset might have influenced the SC responses 
to the stimuli, whether by peri-microsaccadic  modulation45,50 or jittering of  images47, we computed microsac-
cade rate across time from image onset (e.g. Figure 5A,E in “Results”). We did so similarly to how we estimated 
microsaccade rate  recently8. Briefly, we binned microsaccades using a 40 ms moving time window, with time 
steps of 10 ms. In general, we included all trials in our neural data analyses, even when there were microsaccades. 
This was fine because of the low likelihood of microsaccades, especially in the critical early visual burst interval. 
However, we also confirmed that our results were unchanged by repeating the analyses after removing all trials in 
which there was a microsaccade between – 100 and + 300 ms relative to image onset (e.g. Figure 5 in “Results”).

For neural analyses, we sorted the neurons offline using the Kilosort  Toolbox82, followed by manual curation 
using the phy software. We then proceeded to analyze the spike rasters and firing rates.

To investigate whether SC visual responses differentiate between object and non-object stimuli, we plotted 
spike rasters and firing rates across the different image conditions (e.g. Fig. 3 in “Results”). We then assessed 
whether an ideal observer could discriminate between object and non-object stimuli just based on the SC firing 
rates. To do so, we performed receiver operating characteristic (ROC) analyses using 40 ms time bins moving 
in steps of 10 ms. In each 40 ms time bin around the time of image onset, we collected firing rates within this 
interval from all trials of the real-life object condition and all trials of an image control from the same neuron 
(e.g. phase-scrambled or grid-scrambled images). We then ran the ROC analysis to obtain an area under ROC 
curve measure (AUC), allowing us to assess the discriminability between the two firing rate distributions. An 
area under the ROC curve value of 0.5 would indicate non-discriminable firing rate distributions. We per-
formed the ROC analyses at all times from -100 ms to + 300 ms from image onset, with 10 ms resolution. We 
did this because the earliest time at which the saccade target could appear in the task was 300 ms (e.g. Fig. 1). 
We assessed a neuron as detecting objects if its area under the ROC curve in any interval between 0 and 300 ms 
was statistically significantly different from 0.5. We assessed significance by calculating bootstrapped confidence 
intervals for the area under the ROC curve measure and using a p < 0.05 criterion. This is similar to our previous 
 approaches31. Importantly, we plotted full time courses of AUC values to demonstrate the time-dependent nature 
of SC neural responses after stimulus onset. We then averaged across all significant neurons’ AUC time courses 
and obtained 95% confidence intervals across the population. We graphically labeled the time of object detection 
in figures as the time at which the population AUC discrimination time course first deviated significantly from 
0.5 (i.e. no overlap between the 95% confidence interval and 0.5). Of course, this is not meant to be an absolute 
time of discrimination onset, because it is smoothed by our binning procedure. However, it does still provide 
an indication of whether object detection is possible in SC neurons within the time frame of their initial visual 
bursts or later (when feedback from other areas might emerge in the SC neural discharge); this is consistent with 
the example raw firing rates that we included.

In the ROC analyses described above, we pooled object categories together. Because we ran only one exemplar 
from each object category in a given session, it was not easy to convincingly assess whether SC neurons also 
exhibit early object recognition capabilities, besides detecting extrafoveal objects. Future experiments could 
investigate this possibility in more detail, as in, for example, the studies investigating SC face  preference15–19.

We also repeated the ROC analyses for the different functionally-classified neurons. For example, we picked 
only visual-motor-prelude neurons and calculated the area under the ROC curve metrics for those, or we only 
considered visual-delay neurons. This allowed us to assess whether early visual object detection by the SC (e.g. 
in the initial visual burst interval; see “Results”) only occurred in purely sensory neurons, or whether it also 
appeared in deeper visual-motor neurons. In some analyses, we found that whether a neuron had delay-period 
activity or not (e.g. visual-delay and visual-motor-prelude neurons both had delay-period activity) influenced the 
ROC results in either early or late intervals after image onset. Therefore, to demonstrate this point, we combined 
neuron types appropriately; that is, visual-motor-prelude and visual-delay neurons were combined since they 
both showed delay-period activity, and visual-motor or visual neurons were combined together because they 
both lacked delay-period activity.

In all figures and analyses, we showed results for each monkey individually.

Experimental design and statistical analyses
We minimized sampling bias by recording neurons using linear micro-electrode arrays and later sorting them 
offline. We also replicated results in each monkey separately, and we had sufficient sampled neurons to obtain a 
rough estimate of proportions of neurons showing the effects that we were analyzing. For each neuron, we also 
ensured collecting > 30 repetitions per condition, allowing for robust within-neuron analyses.

We provided descriptive statistics in all figures, showing numbers of replicates and variability measures. We 
also showed individual monkey results separately.

All statistical tests were described above and are reported in “Results”.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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